Search results for "Parton distribution function"

showing 10 items of 16 documents

Non-quadratic improved Hessian PDF reweighting and application to CMS dijet measurements at 5.02 TeV

2019

Hessian PDF reweighting, or "profiling", has become a widely used way to study the impact of a new data set on parton distribution functions (PDFs) with Hessian error sets. The available implementations of this method have resorted to a perfectly quadratic approximation of the initial $\chi^2$ function before inclusion of the new data. We demonstrate how one can take into account the first non-quadratic components of the original fit in the reweighting, provided that the necessary information is available. We then apply this method to the CMS measurement of dijet pseudorapidity spectra in proton-proton (pp) and proton-lead (pPb) collisions at 5.02 TeV. The measured pp dijet spectra disagree…

Hessian matrixHessian matrixParticle physicsPhysics and Astronomy (miscellaneous)parton distribution functionsNuclear TheoryFOS: Physical scienceslcsh:AstrophysicsPartonApproxhiukkasfysiikka114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)symbols.namesakeQuadratic equationHigh Energy Physics - Phenomenology (hep-ph)lcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNuclear ExperimentEngineering (miscellaneous)Physicsproton–proton collisions010308 nuclear & particles physicsFunction (mathematics)GluonHigh Energy Physics - PhenomenologyDistribution functionproton-heavy ion collisionsPARTON DISTRIBUTIONSPseudorapiditysymbolslcsh:QC770-798High Energy Physics::Experimentydinfysiikka
researchProduct

Impact of dijet and D-meson data from 5.02 TeV p+Pb collisions on nuclear PDFs

2020

We discuss the new constraints on gluon parton distribution function (PDF) in lead nucleus, derivable with the Hessian PDF reweighting method from the 5.02 TeV p+Pb measurements of dijet (CMS) and $D^0$-meson (LHCb) nuclear modification ratios. The impact is found to be significant, placing stringent constraints in the mid- and previously unconstrained small-$x$ regions. The CMS dijet data confirm the existence of gluon anti-shadowing and the onset of small-$x$ shadowing, as well as reduce the gluon PDF uncertainties in the larger-$x$ region. The gluon constraints from the LHCb $D^0$ data, reaching down to $x \sim 10^{-5}$ and derived in a NLO perturbative QCD approach, provide a remarkable…

Hessian matrixNuclear and High Energy PhysicsParticle physicsdijet productionNuclear TheoryFOS: Physical sciencesnuclear parton distribution functionPartonopen heavy flavour114 Physical sciences7. Clean energy01 natural sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesD meson010306 general physicsNuclear ExperimentPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyPerturbative QCDGluonUniversality (dynamical systems)proton–nucleus collisionHigh Energy Physics - PhenomenologyDistribution functionDGLAPsymbolsHigh Energy Physics::Experiment
researchProduct

Can we fit nuclear PDFs with the high-x CLAS data?

2020

AbstractNuclear parton distribution functions (nuclear PDFs) are non-perturbative objects that encode the partonic behaviour of bound nucleons. To avoid potential higher-twist contributions, the data probing the high-x end of nuclear PDFs are sometimes left out from the global extractions despite their potential to constrain the fit parameters. In the present work we focus on the kinematic corner covered by the new high-x data measured by the CLAS/JLab collaboration. By using the Hessian re-weighting technique, we are able to quantitatively test the compatibility of these data with globally analyzed nuclear PDFs and explore the expected impact on the valence-quark distributions at high x. W…

Hessian matrixParticle physicsPhysics and Astronomy (miscellaneous)EMC effectNuclear TheoryFOS: Physical sciencesPartonlcsh:Astrophysicshiukkasfysiikka01 natural sciences114 Physical sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNuclear ExperimentEngineering (miscellaneous)Physics010308 nuclear & particles physicsddc:530530 Physiknuclear parton distribution functions (nuclear PDFs)High Energy Physics - PhenomenologyDistribution functionsymbolslcsh:QC770-798Nucleonydinfysiikka
researchProduct

Bayesian PDF reweighting meets the Hessian methods

2016

Volume: 273 New data coming from the LHC experiments have a potential to extend the current knowledge of parton distribution functions (PDFs). As a short cut to the cumbersome and time consuming task of performing a new PDF fit, re weighting methods have been proposed. In this talk, we introduce the so-called Hessian re-weighting, valid for PDF fits that carried out a Hessian error analysis, and compare it with the better-known Bayesian methods. We determine the existence of an agreement between the two approaches, and illustrate this using the inclusive jet production at the LHC. Peer reviewed

Hessian matrixPhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Colliderta114parton distribution functionsJet (mathematics)010308 nuclear & particles physicsBayesian probabilityPartonJET DATAre-weighting methodsPROTON114 Physical sciences01 natural sciencesBayesian re-weightingsymbols.namesakeError analysisPARTON DISTRIBUTIONS0103 physical sciencessymbolsLHCHessian re-weighting010306 general physicsNuclear and Particle Physics Proceedings
researchProduct

An update on nuclear PDFs at the LHeC

2017

The prospects for a measurement of nuclear parton distribution functions (PDFs) at the Large Hadron--Electron Collider are discussed in the light of recent progress made in the front of global analysis of nuclear PDFs.

High Energy Physics::PhenomenologyNuclear TheoryFOS: Physical sciencesNuclear parton distribution functionsRecent progress Inelastic scatteringPhysics::Data Analysis; Statistics and Probability114 Physical sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)nuclear PDFsHigh Energy Physics::ExperimentDistribution functions Global analysisNuclear Experiment
researchProduct

Status of nuclear PDFs after the first LHC p–Pb run

2017

In this talk, I overview the recent progress on the global analysis of nuclear parton distribution functions (nuclear PDFs). After first introducing the contemporary fits, the analysis procedures are quickly recalled and the ambiguities in the use of experimental data outlined. Various nuclear-PDF parametrizations are compared and the main differences explained. The effects of nuclear PDFs in the LHC p-Pb hard-process observables are discussed and some future prospects sketched.

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryNuclear TheoryFOS: Physical sciencesPartonhiukkasfysiikka01 natural sciences114 Physical scienceshigh-energy nuclear collisionsHigh Energy Physics - ExperimentNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsNuclear ExperimentHigh-energy nuclear collisions nuclear parton distribution functionsNuclear theoryQuantum chromodynamicsPhysicsLarge Hadron Colliderta114010308 nuclear & particles physicsObservableHigh Energy Physics - Phenomenologynuclear parton distribution functionsDistribution functionParametrization
researchProduct

Constraints on nuclear parton distributions from dijet photoproduction at the LHC

2019

Using QCD calculations of the cross section of inclusive dijet photoproduction in Pb-Pb ultraperipheral collisions in the LHC kinematics as pseudo-data, we study the effect of including these data using the Bayesian reweighting technique on nCTEQ15, nCTEQ15np, and EPPS16 nuclear parton distribution functions (nPDFs). We find that, depending on the assumed error of the pseudo-data, it leads to a significant reduction of the nPDF uncertainties at small values of the momentum fraction $x_A$. Taking the error to be 5\%, the uncertainty of nCTEQ15 and nCTEQ15np nPDFs reduces approximately by a factor of two at $x_A=10^{-3}$. At the same time, the reweighting effect on EPPS16 nPDFs is much smalle…

PB-PB COLLISIONSParticle physicsNuclear TheoryPhysics and Astronomy (miscellaneous)FOS: Physical scienceslcsh:AstrophysicsPartonhiukkasfysiikka114 Physical sciences01 natural sciencesCOLLIDERNuclear Theory (nucl-th)MomentumCross section (physics)High Energy Physics - Phenomenology (hep-ph)lcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityQuantum ChromodynamicsNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentEngineering (miscellaneous)PhysicsQuantum chromodynamicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics - Phenomenologynuclear parton distribution functionsDistribution functionlcsh:QC770-798ydinfysiikkaVECTOR-MESONSParametrization
researchProduct

Impact of CMS 5.02 TeV dijet measurements on gluon PDFs - a preliminary view

2018

We discuss the implications of the preliminary CMS dijet data from 5.02 TeV pp and pPb collisions for gluon PDFs of the proton and nuclei. The preliminary pp data show a discrepancy with NLO predictions using for example the CT14 PDFs. We find that this difference cannot be accommodated within the associated scale uncertainties and debate the possible changes needed in the gluon PDF. A similar discrepancy is found between the CMS pPb data and NLO predictions e.g. with the EPPS16 nuclear modifications imposed on the CT14 proton PDFs. When a nuclear modification ratio of the pp and pPb data is constructed, the uncertainties in the scale choices and in proton PDFs effectively cancel and a good…

PhysicsHessian matrixParticle physicsproton–proton collisionsta114Scale (ratio)Protonparton distribution functionsNuclear TheoryFOS: Physical scienceshiukkasfysiikka114 Physical sciencesgluonsGluonHigh Energy Physics - Experimentsymbols.namesakeHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)symbolsproton–lead collisionsNuclear ExperimentParametrization
researchProduct

nPDF constraints from the large hadron electron collider

2016

An updated analysis regarding the expected nuclear PDF constraints from the future Large Hadron Electron Collider (LHeC) experiment is presented. The new study is based on a more flexible small-$x$ parametrization which provides less biased uncertainty estimates in the region where there are currently no data constraints. The effect of the LHeC is quantified by directly including a sample of pseudodata according to the expected precision of this planned experiment. As a result, a significant reduction of the small-$x$ uncertainties in sea quarks and gluons is observed.

PhysicsParticle physicsparton distribution functions05 social sciencesHadronnuclear collisionsFOS: Physical sciences020207 software engineering02 engineering and technologyElectronDeep inelastic scatteringlaw.inventionNuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)lawQuark–gluon plasma0202 electrical engineering electronic engineering information engineering0501 psychology and cognitive sciencesColliderParametrization050107 human factorsProceedings of XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects — PoS(DIS2016)
researchProduct

Applicability of pion-nucleus Drell-Yan data in global analysis of nuclear parton distribution functions

2017

Despite the success of modern nuclear parton distribution functions (nPDFs) in describing nuclear hard-process data, they still suffer from large uncertainties. One of the poorly constrained features is the possible asymmetry in nuclear modifications of valence $u$ and $d$ quarks. We study the possibility of using pion-nucleus Drell-Yan dilepton data as a new constraint in the global analysis of nPDFs. We find that the nuclear cross-section ratios from the NA3, NA10 and E615 experiments can be used without imposing significant new theoretical uncertainties and, in particular, that these datasets may have some constraining power on the $u$/$d$ -asymmetry in nuclei.

QuarkDrell-Yan processParticle physicsNuclear and High Energy PhysicsNuclear Theorymedia_common.quotation_subjectNuclear TheoryDrell–Yan processFOS: Physical sciencesPartonhiukkasfysiikka01 natural sciencesAsymmetry114 Physical sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)PionRATIO0103 physical sciencesmedicinePion–nucleus scatteringNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear theoryNuclear Experimentmedia_commonPhysicsta114010308 nuclear & particles physicskvarkitHigh Energy Physics::PhenomenologyDrell–Yan processNuclear parton distribution functionsPion-nucleus scatteringlcsh:QC1-999pion–nucleus scatteringnuclear parton distribution functionsHigh Energy Physics - PhenomenologyDistribution functionmedicine.anatomical_structureDIMUON PRODUCTIONHigh Energy Physics::ExperimentNucleusPDFSlcsh:Physics
researchProduct